6/04
Juni 2004
 
TU intern
6/2004 als
pdf-Datei
(2,0 MB)
 Themenseiten 
Titel
Inhalt
Aktuell
Innenansichten
Lehre & Studium
Forschung
Alumni
Internationales
Menschen
Vermischtes
Impressum
TU-Homepage

Wie viel Wasser kann der Acker speichern?

Nachhaltiger Hochwasserschutz mit Methoden der Geophysik

Je feinkörniger der Boden, desto besser hält er Wasser. Das trifft auch auf die schönen Äcker rund um Berlin zu, wie hier im Havelland

Da kann der Boden noch so fruchtbar sein: Wenn seine Durchlässigkeit und das Wasserrückhaltevermögen nicht in optimalem Verhältnis stehen, ist er Erosion und Überflutung schutzlos ausgeliefert.

Lässt sich durch gezielte Bodenbearbeitung der "Schwammeffekt" des Bodens verbessern? Eine Frage, die sich nach der Elbeflut 2002 besonders das Land Sachsen stellt. Damals traf die Flutwelle aus Tschechien mit andauerndem Starkregen in Sachsen zusammen. Die Böden in den Einzugsgebieten der Elbzuflüsse nahmen nicht genügend Regenwasser auf, so dass es zu rasch abfloss und das Hochwasser in der Elbe verstärkte.

Bodenproben sind aufwändig und geben nur punktuell Auskunft über den Zustand eines Ackers. Geophysikalische Methoden hingegen ermöglichen eine flächenhafte Bestimmung wesentlicher Parameter wie Porengröße und Wasserrückhaltevermögen. In Zusammenarbeit mit der Sächsischen Landesanstalt für Landwirtschaft erproben Martin Müller und sein Team vom Fachgebiet Angewandte Geophysik der TU Berlin verschiedene Methoden zur großflächigen Erfassung des Wasserrückhaltevermögens landwirtschaftlich genutzter Flächen.

Neben der Geoelektrik - hier wird der Wassergehalt indirekt über den elektrischen Widerstand des Bodens gemessen - und dem Georadar (Ground penetrating radar) konzentrieren sich die Wissenschaftler vor allem auf ein neues Messverfahren: Mithilfe der "Oberflächen-Nuklear-Magnetischen Resonanz" (SNMR), einer Methode, die sowohl in der Chemie (zur Strukturanalyse von Molekülen) als auch der Medizin (MRT) routinemäßig eingesetzt wird, lassen sich Wassergehalt und Porenstruktur des Bodens ermitteln.

SNMR nutzt die magnetischen Momente, den Kernspin der Protonen in Wassermolekülen, aus, die normalerweise parallel zum Erdmagnetfeld ausgerichtet sind. Durch eine auf dem Acker ausgelegte Spule (Durchmesser fünf bis zehn Meter) wird mittels eines Wechselstromes ein sekundäres Magnetfeld erzeugt. Dieses regt die Protonen an und ändert ihre Ausrichtung. Nach Abschalten des Signals bewegen sie sich wie Kreisel um die Feldlinien des Erdmagnetfeldes, bis sie die überschüssige Energie wieder abgegeben haben. Diese Relaxation ist direkt abhängig von der Porengröße des Bodens: Sie ist um so schneller, je kleiner die Poren sind. Grundsätzlich gilt: je feinkörniger der Boden, desto besser hält er Wasser.

SNMR erlaubt Rückschlüsse über die Wasserverteilung bis in 100 Meter Tiefe hinab. Für die Landwirtschaft sind jedoch vor allem die obersten ein bis zwei Meter interessant. Ziel der Forschungen ist es deshalb, eine möglichst hohe Auflösung dieser verhältnismäßig dünnen Schicht zu erzielen. Erste Versuchsergebnisse deuten darauf hin, dass ungepflügter Boden eine bessere Porenstruktur hat und zwanzig Prozent mehr Wasser speichern kann als gepflügter. Vermutlich ist dies darauf zurückzuführen, dass bodenauflockernde Kleintiere wie Würmer durch das Pflügen vertrieben werden.

Catarina Pietschmann

© TU-Pressestelle 6/2004 | TU intern | Impressum | Leserbriefe