10/06
Oktober 2006
TU intern
10/2006 als
pdf-Datei
(1,2 MB)
 Themenseiten 
Titel
Inhalt
Aktuell
Semesterstart
Innenansichten
Lehre & Studium
Forschung
Alumni
Menschen
Tipps & Termine
Vermischtes
Impressum
TU-Homepage

Atome unterm Mikroskop

Wissenschaftler der TU Berlin entwickelten einzigartiges Gerät zur Beobachtung von Halbleiterkristallen

Physiker Raimund Kremzow, Mitglied der Arbeitsgruppe von Dr. Markus Pristovsek, blickt durch das Tunnelmikroskop. In der Kühlspirale werden die Proben von 800 auf 70 Grad Celsius heruntergekühlt
© TU-Pressestelle

Wissenschaftlern der TU Berlin ist es erstmals gelungen, das Wachstum von Halbleiterkristallschichten direkt zu beobachten und zu untersuchen. Das von ihnen in den letzten sieben Jahren entwickelte sogenannte Rastertunnelmikroskop erlaubt Einblicke in das Wachstum der Kristallschichten, die in dieser Detailtreue bisher unbekannt waren. Mit Halbleiterkristallschichten baut man zum Beispiel Laserdioden für Laserpointer, CD-Rom-Laufwerke oder Verstärker für Mobilfunkanlagen. Mit dieser Technik wird es zukünftig möglich sein, das Wachstum genau zu kontrollieren.

"Das Kristallwachstum konnte man bislang nur mit optischen Geräten beobachten, die allerdings keine einzelnen Atome detektieren können", erklärt der Projektleiter Dr. Markus Pristovsek vom Institut für Festkörperphysik der TU Berlin. "Unser Mikroskop ist dagegen erstmals in der Lage, das Kristallwachstum in der Gasphase zu beobachten, wobei die Bauteile, die eigentlich für eine maximale Hitzeeinwirkung von 200 °C ausgelegt sind, Temperaturen bis zu 600 °C aushalten müssen."

Die Schwierigkeiten bei der Entwicklung lagen allerdings nicht nur in den hohen Temperaturen. Pumpen verursachen außerdem elektrische Störungen und Schwingungen, die auf ein Zehntel des Atomdurchmessers gedämpft werden mussten. Daher hielt man es zuvor für unmöglich, unter diesen Bedingungen ein Bild der Oberfläche im Nanometermaßstab zu erhalten. Dass es den TU-Wissenschaftlern nun trotzdem gelang, ist einer speziellen Schwingungsdämpfung und einem speziell entwickelten Kühlmechanismus zu verdanken. Erste Bilder wurden erfolgreich aufgenommen und zeigten Stufen aus einzelnen Atomen bei Temperaturen bis 600 °C, den typischen realen Wachstumstemperaturen, die bisher in anderen Aufbauten noch nie erreicht wurden. "Dabei wird eine Wolframnadel, an deren Spitze sich ein einziges Atom befindet, im Abstand eines Atomdurchmessers, also Bruchteile eines Nanometers, über eine Oberfläche bewegt", erklärt Markus Pristovsek. "Der je nach Abstand unterschiedliche Stromfluss erlaubt dann, ein Bild der Höhenstruktur und der Position einzelner Atome auf der Oberfläche zu gewinnen." Neueste Ergebnisse zeigen, wie sich die Größe von Quantenpunkten unmittelbar nach dem Wachstum verändert. Das ermöglicht gezielte Einstellung von Größen und Eigenschaften der Quantenpunkte. Die siebenjährigen Entwicklungsarbeiten unter der Leitung von Dr. Markus Pristovsek wurden in der Arbeitsgruppe von Prof. Dr. Wolfgang Richter begonnen. Fortgeführt werden sie nun von dem neu berufenen Prof. Dr. Michael Kneissl.

Patricia Pätzold

© TU-Pressestelle 10/2006 | TU intern | Impressum | Leserbriefe